Scaling Agentic
Coding Across
Your Organization

How to transform your engineering organization
with Claude Code, from pilot to production.

Claude

Contents

Foreword

What is agentic coding?

Rolling out agentic coding at your organization
Measuring ROI

Avoiding common challenges to adoption
Security first: protecting your codebase

Beyond the obvious:
innovative agentic coding applications

Looking forward

Appendix

10

12

15

18

20

22

Foreword

How to transform your engineering organization
with Claude Code, from pilot to production.

Over the last year, agentic coding tools like Claude Code have become table
stakes for engineers, serving as a force multiplier for organizations of all
sizes. In this new landscape, technical leaders face a critical question: How
do you scale agentic coding tools from a handful of early adopters to an entire
engineering organization?

The stakes have never been higher. Companies that successfully deploy
agentic coding at scale are transforming how their teams work—enabling
faster development cycles and freeing engineers to focus on architecture
and innovation rather than repetitive implementation tasks. Meanwhile,
organizations that approach this transformation haphazardly often face
adoption resistance, inconsistent results, and missed opportunities to
fundamentally reimagine how software gets built.

The good news is that successful patterns have emerged. Through working
with engineering teams across various industries and company sizes, we've
identified the critical factors that separate thriving agentic engineering
cultures from those that struggle. These insights reveal that success isn't just
about choosing the right tool; it's about thoughtfully orchestrating changes
to workflows, team dynamics, skill development, and even how you measure
engineering success.

Based on insights from Anthropic's Applied Al team and lessons learned from
our customers, this guide shares best practices for rolling out agentic coding

tools across your organization.

Let's dive in.

Chapter1

What is agentic coding?

Agentic coding tools represent a leap beyond traditional Al code generation.

These are Al systems that act as autonomous coding agents, capable of
understanding context, planning approaches, and executing entire coding
tasks with minimal human oversight. Agentic coding tools can:

Modernize legacy codebases

Teams across industries can more easily migrate COBOL, SAS, and other
outdated systems to modern backends, turning multi-year projects into
months-long initiatives.

Accelerate onboarding

New engineers can explore and understand complex codebases by simply
asking questions about architecture, dependencies, and implementation
details.

Automate incident response

Site Reliability and DevOps teams can build custom agents that automatically
triage and resolve on-call incidents.

Enable non-technical contributors

Product managers can write requirements informed by actual codebase
constraints, while designers can turn Figma mockups into functional
prototypes.

And these use cases only scratch the surface of what’s possible. Check out our
article on how Anthropic teams use Claude Code for additional use cases and

examples.

https://www.anthropic.com/engineering/claude-code-best-practices
https://www.anthropic.com/news/how-anthropic-teams-use-claude-code

I
N

Rolling out
agentic coding at
your organization

Chapter 2

Rolling out agentic coding at your organization

The most successful agentic coding rollouts follow a deliberate expansion
strategy that builds expertise and enthusiasm organically. Here’s what we’ve
seen work:

Start with power users

Begin with a pilot group of 20-50 developers who are already comfortable with
Al-assisted tools. These aren't just your early adopters—they're your future
agentic coding champions. Task them with:

+ Ask them to spend time using Claude Code for common use cases. This is
the best way to realize what customizations are useful and make sure the
tool works well with your codebase.

» Creating custom slash commands in Claude Code tailored to your
organization’s codebase and standards, such as /migrate-db for database
schema updates, /add-feature with company-specific boilerplate, and /fix-
security for common vulnerability patches.

» Creating documentation files with your coding standards, outlining gotchas,
and highlighting best practices via CLAUDE.md files, special files that
Claude automatically pulls into context when starting a new conversation
(Remember: take time to iterate on your CLAUDE.md files as you would any
other agentic prompt. The devil is in the details!)

- Identifying repetitive coding workflows that Claude Code can automate by
engaging with development teams, DevOps engineers, and technical leads
across the organization to understand their pain points - such as boilerplate
code generation, test suite creation, documentation updates, code
refactoring tasks, API client generation, dependency updates, and routine

bug fixes that consume significant developer time

« Establish a dedicated Slack or Teams channel for sharing best practices,
troubleshooting issues, and broader discussion

« Build wrapper scripts to handle authentication for third-party tools, like
AWS and GCP

For more tips, check out our Eng Blog article on Claude Code best practices.

Launch with a hackathon

Rather than a phased rollout that leaves teams waiting their turn, unite your
organization with a kick-off hackathon. Your pilot users become mentors,
sharing prompts and techniques while everyone learns together. This creates
network effects that accelerate adoption and organic learnings. Bonus points
if you order pizzas to stave off hunger and drive participation.

Scale through internal expertise

As adoption grows, your pilot users evolve into internal consultants.
Eventually, your organization will get to the place where they can run their
own agentic coding workshops, with early adopters leading sessions and
creating ongoing educational content inspired by their own learnings.

Sharing CLAUDE.md files

CLAUDE.md files are an ideal place for documenting repository etiquette,
developer environment setup, and any unexpected behaviors particular

https://www.anthropic.com/engineering/claude-code-best-practices

to a given project. However, the real power of CLAUDE.md files emerges
when they’re shared strategically across teams and organizations, creating
a knowledge layer that scales Al-powered development. Here are some best
practices for using them at scale:

Create project-level CLAUDE.md files: Name it CLAUDE.md and check

it into git so that you can share it across sessions and with your team. This
simple practice transforms individual Claude Code sessions into team-aligned
development experiences.

Commit to main branch: Place CLAUDE.md in your repository root and
commit it to your main branch. This ensures every developer who clones the
repository automatically inherits the project’s Claude Code configuration and
context.

Include in onboarding checklists: Make reviewing and understanding the
project’s CLAUDE.md file part of your developer onboarding process. New
team members should understand not just the codebase, but how Claude Code
should be used within the project context.

Version control like documentation: Treat CLAUDE.md changes with the
same rigor as documentation updates. Include updates in pull requests when
architectural decisions change, new development patterns emerge, or team
conventions evolve.

Branch-specific variations: For projects with significantly different
development patterns across branches (feature branches, release branches),
consider branch-specific CLAUDE.md content that reflects the current
development focus.

See the appendix for an example project-level CLAUDE.md structure.

CCCCCCC 3

Measuring ROI

Measuring ROI

Pilots are only impactful if they drive value and highlight the art of the
possible. For most engineering leaders, “how do we measure ROI?” remains
the top question to answer when it comes to driving wider adoption.

Beyond simply measuring lines of code (which is a notoriously a spotty
metric), teams are finding both quantitative and qualitative ways to quantify
agentic coding’s impact:

Sprint throughput: Teams with mature DevOps practices correlate agentic
coding adoption with feature delivery speed

Time-to-completion: Track how long standard tasks take before and after
adoption

Migration acceleration: Reduced time to migrate off legacy codebases onto
modern systems

Developer satisfaction surveys: Reduced time spent on repetitive tasks and
increased time spent on more thoughtful design work

Onboarding speed: Increased time to productivity for new hires

Cross-team collaboration: Less reliance on developers to prototype and test
products before deployment

Additionally, Claude Code comes baked with its own productivity metrics
tracking via Activity Metrics. Insights include:

Lines of code accepted: Track the actual code volume that developers are
accepting and using from Claude Code

Suggestion accept rate: Understand how well Claude Code’s suggestions
align with your team’s needs

Activity trends: Monitor daily active users and sessions to see adoption
patterns

Spend tracking: View organization-wide and per-user spending with daily
granularity

Team insights: See individual developer metrics including avg daily spend
and lines per day

At the end of the day, the most compelling metric might be the simplest, i.e.:
“This task used to take our team a week. Now one engineer completes it in half
aday.”

10

Chapter 4

Avoiding common
challenges to
adoption

Chapter 4

Avoiding common challenges to adoption

Like any technology, agentic coding tools can’t be deployed successfully in a
vacuum. Here’s how to sidestep the most common adoption challenges and
ensure your Claude Code roll out drives impact, fast:

Don't fall into the “do everything” trap

Agentic tools are enthusiastic, but don’t always have enough context to be
impactful. New users often give them massive, unbounded tasks with poor
results. The solution? Test-driven development (TTD), which provides
guardrails and clear success criteria for your agentic coding tool.

Start with test specifications: Instead of asking Claude Code to “build a
user authentication system,” begin by having it write comprehensive tests
first. Ask it to create test cases that define exactly what success looks like:
authentication flows, edge cases, error handling, and security requirements.

Implement features incrementally: Break down your request into small,
testable chunks. Have Claude Code implement just enough code to make one
test pass at a time. For example, start with basic login validation, then add
password hashing, then session management.

Validate at each checkpoint: After each implementation step, run the
tests and review the code changes. Claude Code can help you analyze test
results and identify issues, but don’t let it move forward until the current
functionality is solid.

Expand scope gradually: Once core functionality is working and tested,
incrementally add new requirements. Ask Claude Code to first write tests for
the new feature, then implement it. This prevents scope creep and maintains
code quality.

Use Claude Code’s iterative nature: Take advantage of the command-line
workflow by running focused commands like “write tests for user registration”
followed by “implement the registration logic to pass these tests” rather than
one massive “build everything” request.

Check out the appendix for an example of how to run test-driven development
with Claude Code.

Overcome the context gap

“This isn’t working” or “The button is too big” gives your Al nothing to work
with. These vague descriptions lead to wasted iterations and frustrated
debugging sessions. Instead, we suggest veering on the side of over-sharing
context with Claude and providing clear, actionable feedback for optimal
results.

Share comprehensive error information: Instead of “it crashed,” provide
the full error message, stack trace, and the specific action that triggered it.
Copy-paste terminal output, browser console errors, or IDE error panels
directly into your Claude Code session.

Document the complete environment: Include your operating system,
language versions, framework details, and relevant dependencies. Claude
Code needs to understand your technical stack to provide accurate solutions.

Use visual debugging strategically: When dealing with Ul issues, take
screenshots and describe exactly what’s wrong—"the login button extends
20px beyond the container border on mobile screens” vs. “the button looks
weird.” For command-line tools, share before/after terminal outputs.

12

Specify precise expected vs. actual behavior: Write clear acceptance criteria
like “Expected: API returns 200 status with user data. Actual: Returns 401
with ‘invalid token’ message.” This gives Claude Code concrete targets to work
toward.

Include relevant file contents: Share the specific code files, configuration
files, or data that relate to your issue. Claude Code can’t debug code it can’t
see.

Check out the appendix for a sample prompt that offers ample context for
Claude to (hopefully) zero in on the root cause of a software bug.

Prioritize prompt engineering

Success with agentic coding requires learning to communicate effectively
with AIL. Many developers jump in expecting Claude Code to read their minds,
then get frustrated with subpar results. Additionally, as with any Al agent,
providing the right structure, contents, and order is critical for ensuring
optimal results.

Mastering Claude Code communication

Treat Claude like an engineer: Ask yourself if your teammate would
understand exactly what you’re asking for, based on the prompt you’re giving
them. If not, try to anticipate what questions they might have next or what
things they’d want clarification or more detail on before they start working,
and provide them to claude proactively.

Use technical precision: Replace vague terms with specific technical
language. Instead of “make it faster,” specify “optimize the database query to
reduce response time from 2 seconds to under 500ms” or “implement caching
to reduce API calls.”

Provide examples and constraints: Show Claude Code what success looks
like with concrete examples. “Follow this existing API pattern [paste code]” or
“Use this coding style [share style guide]” gives clearer direction than abstract
requirements.

Break complex tasks into focused commands: Rather than “build a
complete e-commerce system,” use sequential prompts: “Create the database
schema,” then “implement product catalog API,” then “add shopping cart
functionality.” Each command should have a single, clear objective.

Learn incremental refinement: Start with basic functionality and iteratively
improve. “Create a simple user login form” followed by “add input validation”
then “implement password strength requirements” builds better results than
trying to specify everything upfront.

Master the feedback loop: Learn to give Claude Code specific feedback on
its output. “The error handling is too generic—add specific validation for
email format and password length” guides better improvements than “fix the
validation.”

Practice context management: Understand what information Claude Code
retains within a session and what needs to be re-stated. Reference previous
work explicitly: “Using the authentication middleware from earlier, now add
role-based permissions.”

Check out the appendix for a sample prompt with an effective structure for
ensuring adequate output.

13

3’

Chapter 5 E ;

Security first:

protecting your
codebase

Chapter 5

Security first: protecting your codebase

Security considerations aren’t optional. They’re foundational to successful
agentic coding adoption. Unlike traditional development where security
reviews happen at the end, agentic tools require security-by-design thinking
from day one.

While Claude Code can help write more secure code, we recommend using it
alongside your team’s existing security tools, rather than replacing them.

Policy-as-code enforcement: Create explicit security policies in your
CLAUDE.md files that Claude Code can reference. For example: “All database

queries must use parameterized statements,” “API endpoints require
authentication middleware,” or “No hardcoded secrets in configuration files.”

Security review automation: Use a /security-review command to run

ad-hoc security analyses from your terminal before committing code. This
command uses a specialized security-focused prompt that checks for common
vulnerability patterns including SQL injection risks, cross-site scripting

(XSS) vulnerabilities, authentication and authorization flaws, insecure data
handling, and dependency vulnerabilities. You can also configure a /security-
review slash command that audits GitHub Actions workflows for security
vulnerabilities by checking against policies defined in your CLAUDE.md files.

Security pattern libraries: Build a repository of approved security patterns
that Claude Code can reference. Instead of letting it improvise authentication
logic, provide tested, compliant examples it should follow.

Automated vulnerability remediation: Use Claude Code to not just identify
security issues but propose specific fixes. “This SQL query is vulnerable to
injection—here’s the parameterized version” becomes part of its standard
response pattern.

Configuring enterprise permissions: With Claude Code, admins can push
out configurations and permitted MCP tools to all users through enterprise
managed policy settings that take precedence over user and project settings.
This centralized approach transforms Claude Code from a powerful but
potentially inconsistent individual tool into a governed, enterprise-ready
development platform.

MCP server management

Model context protocol is an open standard released by Anthropic that

standardizes how Al models connect with external data sources and tools. By
integrating MCP servers with Claude Code, you can add additional context
and functionality to your software development environment. Still, while the
agentic coding ecosystem moves fast, not all MCP server integrations meet
enterprise security standards. Here’s how to keep your MCP servers up-to-
date:

Security-first evaluation process: Before approving any MCP server, conduct
thorough security assessments. Evaluate data handling, API security, access
controls, and vendor security posture. Create a standardized evaluation rubric
that covers code access, data transmission, and third-party dependencies.

Curated integration marketplace: Create an internal “app store” of pre-
approved MCP servers. Include security assessments, approved use cases, and
implementation guidelines for each tool. This prevents shadow IT adoption
while enabling innovation.

15

https://modelcontextprotocol.io/

Integration sandboxing: Test new MCP servers in isolated environments
before production deployment. Monitor data flow, API calls, and security
behavior to identify potential risks before they impact your main codebase.

Regular security audits: Schedule quarterly reviews of all approved MCP
servers. Check for security updates, vulnerability reports, and changes in
vendor security practices. Maintain an integration lifecycle that includes
deprecation plans for tools that don’t meet evolving security standards

Code review evolution

Organizations can use agentic coding tools themselves as security reviewers.
This approach can identify potential vulnerabilities and suggest secure
alternatives as it relates to the following use cases (and more):

Multi-layered security analysis: Configure Claude Code to perform different
types of security reviews—static analysis for common vulnerabilities,
architectural review for security patterns, and compliance checking against
your internal policies.

Context-aware vulnerability detection: Train Claude Code to understand
your specific technology stack and security requirements. A Node.js
application has different security considerations than a Python Flask app or a
Go microservice.

Secure alternative suggestions: When Claude Code identifies a security
issue, require it to propose specific, tested alternatives. “This cookie
handling is insecure” should come with “Use httpOnly and secure flags with
SameSite=Strict configuration.”

Security debt tracking: Use Claude Code to identify and catalog technical
security debt—outdated dependencies, deprecated security practices, or
missing security controls—and prioritize remediation efforts.

Collaborative security education: Let Claude Code explain security issues
in developer-friendly terms, turning each security review into a learning
opportunity rather than just a compliance checkpoint.

With these best practices in place, Claude Code can help improve your
security posture and accelerate code auditing and reviews.

16

Chapter 6

Beyond the obvious:
Innovative agentic

coding applications

Beyond the obvious:

innovative agentic coding applications

The most exciting agentic coding use cases often come from unexpected

places. Organizations like Brex and Rakuten are discovering that
Claude Code’s capabilities extend far beyond basic code generation into
transformative business processes.

Teams are building specialized agents on top of agentic coding platforms like
the Claude Code SDK, creating domain-specific Al assistants that understand
their unique technical challenges and business requirements. Here are a few
examples:

Intelligent on-call automation: Deploy agents that monitor system health,
parse complex log files, correlate errors across microservices, and implement
targeted fixes. These agents can handle routine incidents like memory leaks,
database connection issues, or service scaling, escalating only when human
judgment is required.

Migration and modernization specialists: Create purpose-built agents for
specific technology transitions. A legacy-to-cloud agent might understand
your existing mainframe COBOL patterns and systematically convert them
to containerized microservices, maintaining business logic while updating
architecture.

Continuous documentation engines: Develop agents that monitor code
changes, understand architectural decisions, and automatically update
technical documentation. These agents can maintain API documentation,
system diagrams, and runbooks in sync with actual implementation.

Performance optimization agents: Build specialized agents that analyze
application performance, identify bottlenecks, and implement optimizations.
They can monitor database query performance, suggest indexing strategies, or
optimize algorithm implementations based on production metrics.

Regulatory compliance agents: Create agents that understand specific
regulatory requirements (GDPR, SOX, HIPAA) and continuously audit
codebases for compliance issues, automatically implementing required
controls and documentation.

What types of agents would you build?

18

https://www.anthropic.com/customers/brex
https://www.anthropic.com/customers/rakuten
https://docs.anthropic.com/en/docs/claude-code/sdk

.

Chapter 7

Looking forward

Looking forward

Agentic coding represents a fundamental shift in how we build software, from
human-written to human-guided development. The organizations seeing the
most success aren’t those who move fastest, but those who build the strongest
foundations.

Start small with a pilot group. Build your internal expertise. Create the
infrastructure for success. Then scale deliberately, using hackathons and
internal champions to drive adoption.

Agentic coding is your team’s cognitive multiplier. The only question is: how
quickly can you help them harness it?

Ready to scale agentic coding across your organization? Reach out to our team
to learn more.

Note: As agentic coding evolves rapidly, best practices continue to emerge. This
guide reflects current insights as of August 2025.

20

https://www.anthropic.com/contact-sales

Appendix

Appendix

Project-level CLAUDE.md structure example

Test-driven development with Claude Code:
User authentication system example

Content-rich prompt example

Well-structured prompt example

23

24

31

35

22

Project-level CLAUDE.md
structure example

Example project-level CLAUDE.md structure

Project Feline - Cloud Task Scheduler

Development Environment
- Use Node.js 18+ with nvm for version management
- Run “npm run setup” for initial environment configuration

- ALl database changes require migration files in " /migrations’

Claude Code Guidelines

- Always run tests before committing: “npm test’

- Use TypeScript for all new modules

- Follow our API naming convention: " /api/v2/tasks/{resource}’
- Security: Never commit API keys or database credentials in
code

Architecture Notes

- Task scheduling uses Redis queues for job management

- ALl external API calls must include retry logic and timeouts
- Database queries should use connection pooling for
performance

Current Sprint Focus

- Implementing distributed task execution

- Focus on fault-tolerance and recovery patterns

- A1l scheduling logic requires unit tests + integration tests

23

Test-driven development
with Claude Code:

User authentication
system example

Step 1: Define requirements with Claude Code

Bash

Terminal command to Claude Code

clauvde-code --task “Create comprehensive tests for a user
authentication system with registration, login, password
reset, and JWT token management”

Claude code response

Python

tests/test_auth_system.py
import pytest
import jwt
from datetime import datetime, timedelta
from unittest.mock import Mock, patch
from auth_system import AuthSystem, User, AuthenticationError,
ValidationError
class TestUserAuthentication:
@pytest.fixture
def auth_system(self):

return AuthSystem(secret_key="test_secret”, db_
connection=Mock())

@pytest.fixture
def valid_user_data(self):
return {
“email”: "“user@example.com”,
“password”: “SecurePass123!”,
“confirm_password”: “SecurePass123!"”

Registration Tests
def test_register_user_success(self, auth_system, valid_
user_data):
“""Test successful user registration
with patch.object(auth_system.db, ‘user_exists’,

mwn

return_value=False):
with patch.object(auth_system.db, ‘create_user’,
return_value=True):
result = auth_system.register(#+*valid_user_data)

assert result[’success’] = True

assert result[‘user_id’] is not None

assert result[‘message’] = “User registered
successfully”

def test_register_user_duplicate_email(self, auth_system,
valid_user_data):
“""Test registration with existing email””"”
with patch.object(auth_system.db, ‘user_exists’,
return_value=True):
def test_register_invalid_email_format(self, auth_system):
“""Test registration with invalid email format””"”
invalid_data = {
“email”: “invalid-email”,
“password”: “SecurePassl123!”,
“confirm_password”: “SecurePass123!”

24

+
with pytest.raises(ValidationError) as exc_info:
auth_system.register(++invalid_data)
assert “Invalid email format” in str(exc_info.value)

def test_register_weak_password(self, auth_system):
“""Test registration with weak password”””
weak_password_data = {
“email”: "“user@example.com”,
“password”: “123",
“confirm_password”: *“123"
i
with pytest.raises(ValidationError) as exc_info:
auth_system.register (++weak_password_data)
assert “Password must be at least 8 characters” in
str(exc_info.value)

Login Tests
def test_login_success(self, auth_system):
“""Test successful login with valid credentials”””
mock_user = Mock()
mock_user.id = 1
mock_user.email = “user@example.com”

mock_user.password_hash = “$2b$12$hashed_password”

with patch.object(auth_system.db, ‘get_user_by_email’,
return_value=mock_user):
with patch.object(auth_system, ‘_verify_password’,
return_value=True):
result = auth_system.login(“user@example.com”,
“correct_password”)
assert result[’success’] = True
assert ‘access_token’ in result
assert ‘refresh_token’ in result
assert result[‘user’][‘email’] = “user@
example.com”

def test_login_invalid_credentials(self, auth_system):
“""Test login with invalid credentials”””
with patch.object(auth_system.db, ‘get_user_by_email’,
return_value=None):
with pytest.raises(AuthenticationError) as exc_
info:
auth_system.login(“nonexistent@example.com”,
“any_password”)
assert “Invalid credentials” in str(exc_info.

value)

def test_login_wrong_password(self, auth_system):
“""Test login with correct email but wrong password”””
mock_user = Mock()
mock_user.email = “user@example.com”

with patch.object(auth_system.db, ‘get_user_by_email’,
return_value=mock_user):
with patch.object(auth_system,
return_value=False):
with pytest.raises(AuthenticationError) as

1

_verify_password’,

exc_info:
auth_system.vlogin(“user@example.com”,
“wrong_password”)

assert “Invalid credentials” in str(exc_info.

value)

JWT Token Tests
def test_generate_access_token(self, auth_system):
“""Test JWT access token generation”””
user_id = 1

token = auth_system.generate_access_token(user_id)

decoded = jwt.decode(token, “test_secret”,
algorithms=["”HS256"1)

assert decoded[‘user_id’] = user_id

assert decoded[‘type’] = ‘access’

25

assert ‘exp’ in decoded

def test_verify_valid_token(self, auth_system):
“""Test verification of valid JWT token”""”
user_id = 1
token = auth_system.generate_access_token(user_id)

result = auth_system.verify_token(token)
assert result[’valid’] = True
assert result[’user_id’] = user_id

def test_verify_expired_token(self, auth_system):
“""Test verification of expired JWT token”””
Create token that expires in -1 hour
payload = {
‘user_id’': 1,
‘type’: ‘access’,
‘exp’: datetime.utcnow() - timedelta(hours=1)
}
expired_token = jwt.encode(payload, “test_secret”,
algorithm="HS256")
result = auth_system.verify_token(expired_token)
assert result[‘valid’] = False
assert result[‘error’] = ‘Token expired’

Password Reset Tests
def test_request_password_reset(self, auth_system):
“""Test password reset request”””
mock_user = Mock()
mock_user.id = 1
mock_user.email = “user(@example.com”

with patch.object(auth_system.db, ‘get_user_by_email’,
return_value=mock_user):
with patch.object(auth_system, ‘_send_reset_
email’) as mock_send:

result = auth_system.request_password_
reset(“user@example.com”)

assert result[’success’] = True

mock_send.assert_called_once()

def test_reset_password_success(self, auth_system):
“""Test successful password reset with valid token”"”
reset_token = “valid_reset_token”
new_password = “NewSecurePass123!"”

with patch.object(auth_system, ‘_verify_reset_token’,
return_value={‘valid’: True, ‘user_id’: 1}):
with patch.object(auth_system.db, ‘update_

password’, return_value=True):

result = auth_system.reset_password(reset_
token, new_password)

assert result[‘success’] = True

assert result[’‘message’] = “Password reset
successfully”

Step 2: Run tests (they should fail)

Bash

Run the tests - they will fail because implementation
doesn’t exist yet
pytest tests/test_auth_system.py -v

Expected output: ALl tests fail with ImportError or similar

Step 3: Generate implementation with Claude
Code

Bash

claude-code --task “Implement the AuthSystem class to pass
all the existing tests. Focus on security best practices for
password hashing and JWT token management.”

Claude Code response

Python

auth_system.py

import becrypt

import jwt

import re

from datetime import datetime, timedelta
from typing import Dict, Optional, Any
import secrets

import smtplib

from email.mime.text import MIMEText

class AuthenticationError(Exception):
“""Raised when authentication fails

min

pass

class ValidationError(Exception):
“""Raised when input validation fails

mmn

pass

class User:
def __init_ (self, id: int, email: str, password_hash:
str):
self.id = id
self.email = email
self.password_hash = password_hash

class AuthSystem:
def __init__ (self, secret_key: str, db_connection,
access_token_expire_hours: int = 1,
refresh_token_expire_days: int = 30):
self.secret_key = secret_key
self.db = db_connection
self.access_token_expire_hours = access_token_expire_
hours
self.refresh_token_expire_days = refresh_token_expire_
days

Password requirements

self.min_password_length = 8

self.password_pattern = r’/A(?=.%[a-z]) (?=.%[A-Z])
(?=.%\d) (>=.%[@$!%*?&]) [A-Za-z\d@$! %*?&] "’

def register(self, email: str, password: str, confirm_
password: str) — Dict[str, Any]:
“""Register a new user”"”
Validate input
self._validate_registration_input(email, password,

confirm_password)

27

Check if user already exists
if self.db.user_exists(email):
raise ValidationError(”Email already registered”)

Hash password
password_hash = bcrypt.hashpw(password.encode(‘utf-8"),

bcrypt.gensalt()).decode(‘utf-8")

def
Any]:

hash):

Create user in database
user_id = self.db.create_user(email, password_hash)

return {
‘success’: True,
‘user_id’: user_id,
‘message’: ‘User registered successfully’

login(self, email: str, password: str) — Dict[str,
“""Authenticate user and return tokens”””
Get user from database
user = self.db.get_user_by_email(email)
if not user:
raise AuthenticationError(“Invalid credentials”)

Verify password
if not self._verify_password(password, user.password_

raise AuthenticationError(“Invalid credentials”)

Generate tokens
access_token = self.generate_access_token(user.id)
refresh_token = self.generate_refresh_token(user.id)

return {
‘success’: True,
‘access_token’: access_token,

‘refresh_token’: refresh_token,
‘user’: {

‘id’: user.id,

‘email’: user.email

def generate_access_token(self, user_id: int) — str:
“""Generate JWT access token”””
payload = {
‘user_id’: user_id,

‘type’: ‘access’,

1 ’

exp
access_token_expire_hours),
‘iat’: datetime.utcnow()
}
return jwt.encode(payload, self.secret_key,
algorithm="HS256")

def generate_refresh_token(self, user_id: int) — str:
“""Generate JWT refresh token”””
payload = {
‘user_id’: user_id,
‘type’: ‘refresh’,
! datetime.utcnow() + timedelta(days=self.
refresh_token_expire_days),
‘iat’: datetime.utcnow()

’

exp’:

}

return jwt.encode(payload, self.secret_key,
algorithm="HS256")

def verify_token(self, token: str) — Dict[str, Any]:
“m"\Jerify JWT token”""
try:
payload = jwt.decode(token, self.secret_key,
algorithms=[‘HS256"'])
return {

: datetime.utcnow() + timedelta(hours=self.

28

‘valid’: True,
‘user_id’: payload[‘user_id’],
‘type’: payload[‘type’]
}
except jwt.ExpiredSignatureError:
return {‘valid’: False, ‘error’: ‘Token expired’}
except jwt.InvalidTokenError:
return {’valid’: False, ‘error’: ‘Invalid token’}

def request_password_reset(self, email: str) — Dict[str,
Any]:
“""Request password reset”””
user = self.db.get_user_by_email(email)
if not user:
Don’t reveal if email exists or not
return {’success’: True, ‘message’: ‘Reset
instructions sent if email exists’}

Generate reset token
reset_token = self._generate_reset_token(user.id)

Send reset email
self._send_reset_email(user.email, reset_token)

return {’success’: True, ‘message’: ‘Reset
instructions sent’}

def reset_password(self, reset_token: str, new_password:

str) — Dict[str, Any]:

“""Reset user password with token”"””

Verify reset token

token_data = self._verify_reset_token(reset_token)

if not token_data[’valid’]:

raise AuthenticationError(“Invalid or expired

reset token”)

Validate new password
self._validate_password(new_password)

Hash new password
password_hash = bcrypt.hashpw(new_password.
encode(‘utf-8’), bcrypt.gensalt()).decode(’utf-8")

Update password in database
self.db.update_password(token_datal ‘user_id’],
password_hash)

return {‘success’: True, ‘message’: ‘Password reset
successfully’}

def _validate_registration_input(self, email: str,
password: str, confirm_password: str):
“""Malidate registration input”””
if not self._is_valid_email(email):
raise ValidationError(”Invalid email format”)

if password == confirm_password:
raise ValidationError(“Passwords do not match”)

self._validate_password(password)

def _validate_password(self, password: str):
“""\Jalidate password strength”””
if len(password) < self.min_password_length:
raise ValidationError(f”Password must be at least
{self.min_password_length} characters”)

if not re.match(self.password_pattern, password):
raise ValidationError(“Password must contain

uppercase, lowercase, digit, and special character”)

def _is_valid_email(self, email: str) — bool:
“""\Jalidate email format”""”

29

pattern = r'~[a-zA-20-9._%+-]1+@[a-zA-Z20-9.-]1+\.
[a-zA-Z]1{2,}$’

return bool(re.match(pattern, email))

def _verify_password(self, password: str, password_hash:
str) — bool:
“""\Jerify password against hash”"”
return berypt.checkpw(password.encode(‘utf-8'),
password_hash.encode(‘utf-8"))

def _generate_reset_token(self, user_id: int) — str:

mmn

“""Generate password reset token

payload = {
‘user_id’: user_id,
‘type’: ‘reset’,

1

exp’: datetime.utcnow() + timedelta(hours=1),
1 hour expiry

‘iat’: datetime.utcnow()
+

return jwt.encode(payload, self.secret_key,
algorithm="HS256")

def _verify_reset_token(self, token: str) — Dict[str,
Any]:
“"m\Jerify password reset token”"”
try:
payload = jwt.decode(token, self.secret_key,
algorithms=[‘HS256"1)
if payload[‘type’] == ‘reset’:
return {’valid’: False, ‘error’: ‘Invalid
token type’}
return {’valid’: True, ‘user_id’:
id’1}
except jwt.ExpiredSignatureError:
return {‘valid’: False, ‘error’: ‘Token expired’
except jwt.InvalidTokenError:
‘Invalid token’

return {’valid’: False, ‘error’:

payload[‘user_

#

}

I

def _send_reset_email(self, email: str, reset_token:str):
“""Send password reset email”""”
In production, implement actuval email sending
For now, this is a placeholder
pass

Step 4: Run tests again (green phase)

Bash

pytest tests/test_auth_system.py -v

Expected output: All tests pass!

Step 5: Refactor and enhance with Claude Code

Bash

claude-code --task “Review the authentication system for
security improvements, add rate limiting for login attempts,
and enhance error handling. Maintain all existing test
compatibility”

30

Content-rich
prompt example

Define requirements with Claude Code

Bash

claude-code --task “Debug authentication failure in user
dashboard - getting 500 errors on login attempts”
Environment information
+ Operating system: macOS Sonoma 14.2.1
+ Node.js version: v18.17.1
« npm version: 9.8.1
« Framework: Express.js v4.18.2
- Database: PostgreSQL 15.3
+ Key dependencies:
« jsonwebtoken: *9.0.2
« beryptjs: "2.4.3
+pg: "8.11.3

« express-rate-limit: *6.10.0

Full error information

Error: Authentication failed during login process

at UserController.login (/Users/dev/myapp/controllers/
userController.js:45)

at Layer.handle [as handle_request] (/Users/dev/myapp/
node_modules/express/lib/router/layer.js:95)

at next (/Users/dev/myapp/node_modules/express/lib/router/
route.js:144)

at Route.dispatch (/Users/dev/myapp/node_modules/express/
lib/router/route.js:114)

at Layer.handle [as handle_request] (/Users/dev/myapp/
node_modules/express/lib/router/layer.js:95)

at /Users/dev/myapp/node_modules/express/lib/router/index.
js:284

at Function.process_params (/Users/dev/myapp/node_modules/
express/lib/router/index.js:346)

at next (/Users/dev/myapp/node_modules/express/lib/router/
index.js:280)

at /Users/dev/myapp/middleware/auth.js:23

at Layer.handle [as handle_request] (/Users/dev/myapp/
node_modules/express/lib/router/layer.js:95)

Database connection error in logs:

[2024-01-15 14:23:15] ERROR: connection to server at
“localhost” (127.0.0.1), port 5432 failed: FATAL: password
authentication failed for user “myapp_user”

[2024-01-15 14:23:15] ERROR: Query execution failed - relation
“users” does not exist

31

Browser console error

POST http://localhost:3000/api/auth/login 500 (Internal Server
Error)
Uncaught (in promise) Error: Request failed with status code
500

at createError (createError.js:16:1)

at settle (settle.js:17:1)

at XMLHttpRequest.onloadend (xhr.js:66:1)

Reproduction steps

1. Start the application: npm run dev

2. Navigate to http: //localhost:3000/dashboard

3. Enter credentials: testuser@example.com / passwordl23
4. Click “Sign In” button

5. Observe 500 error in browser network tab

Check terminal logs showing database connection failure

Expected vs. actual behavior

« Expected: User successfully logs in, receives JWT token, and redirects to /
dashboard with 200 status

« Actual: Login attempt returns 500 status with “Authentication failed”
message, user remains on login page

Relevant code files
controllers/userController.js (Login method causing error):

Javascript

berypt = require(’beryptjs’);

jwt = require(’jsonwebtoken’);

User = require(’../models/User’);
exports.login = (req, res) = A{
{

{ email, password } = req.body;

// Find user by email
user = User.findByEmail(email);
('user) {
res.status(401).json({ message: ‘Invalid
credentials’ });

F

// Verify password
isValidPassword = becrypt.compare(password,
user.password_hash);
(!'isValidPassword) {
res.status(401).json({ message: ‘Invalid
credentials’ });

I

// Generate JWT token - LINE 45 WHERE ERROR OCCURS
token = jwt.sign(
{ userld: user.id, email: user.email },
process.env.JWT_SECRET,
{ expiresIn: ‘24h’ }
);

res.json({
message: ‘Login successful’,

32

current .env file

token: token,
user: { id: user.id, email: user.email } NODE_ENV=development

1} PORT=3000
JWT_SECRET=your-secret-key-here

} catch (error) { DB_USER=myapp_user

console.error(’Login error:’, error); DB HOST=localhost
res.status(500).json({ message: ‘Authentication failed’ DB_NAME=myapp_db
}; DB_PASSWORD=wrongpassword123
} DB_PORT=5432

}

config/database.js (Database configuration)

Javascript

const { Pool } = require(’pg’);

const pool = new Pool({

user: process.env.DB_USER || ‘myapp_user’,
host: process.env.DB_HOST || ‘localhost’,
database: process.env.DB_NAME || ‘myapp_db’,
password: process.env.DB_PASSWORD || ‘defaultpassword’,
port: process.env.DB_PORT || 5432,
};

module.exports = pool;

Database schema (users table)
SOL
users (
id ’
email (255) 0
password_hash (255) 0

created_at ,
updated_at

Visual context
+ Login form UI: Standard email/password form with “Sign In” button

« Network tab: Shows POST request to /api/auth/login returning 500
status

« Console output: Application starts successfully on port 3000, but database
connection fails immediately when login is attempted

Additional context

« This worked fine yesterday before I updated some dependencies

» PostgreSQL service is running (confirmed with brew services list)
» Database exists and user table has test data

« Same issue occurs with different user accounts

« Problem started after running npm update this morning

WhatI've tried

1. Restarted PostgreSQL service

2. Verified database credentials manually with psql

3. Checked that users table exists and has data
4. Cleared npm cache and reinstalled node_modules
5. Rolled back to previous git commit - issue persists

Please help identify the root cause and provide a fix that addresses both the
database connection issue and any potential problems in the authentication
flow.

34

Well-structured
prompt example

Comprehensive Claude Code prompt:
Building a REST API for user management

Bash

clauvde-code --task “Build a complete REST API for user
management with authentication, validation, and comprehensive
testing”

Project requirements

Tech stack

« Runtime: Node.js vi8+ with Express.js framework

- Database: PostgreSQL with raw SQL queries (no ORM)

« Authentication: JWT tokens with refresh token support
« Validation: Input validation and sanitization

« Testing: Jest with supertest for API testing

« Security: Rate limiting, password hashing (bcrypt), CORS

« Documentation: OpenAPI/Swagger specification

Functional requirements

Core user operations

« Runtime: Node.js v18+ with Express.js framework

- Database: PostgreSQL with raw SQL queries (no ORM)

« Authentication: JWT tokens with refresh token support

« Validation: Input validation and sanitization

« Testing: Jest with supertest for API testing

« Security: Rate limiting, password hashing (bcrypt), CORS

- Documentation: OpenAPI/Swagger specification

Expected API endpoints
POST /api/auth/register Register new user
POST /api/auth/login User login
POST /api/auth/logout User logout
POST /api/auth/refresh Refresh JWT token
POST /api/auth/forgot-password Request password reset
POST /api/auth/reset-password Reset password with token
GET /api/users/profile Get current user profile
PUT /api/users/profile Update current user
profile
DELETE /api/users/profile - Delete current user
account
PUT /api/users/change-password - Change user password
GET /api/admin/users - List all users (admin
only)

35

« Input sanitization against XSS and SQL injection

GET /api/admin/users/:id - Get specific user (admin) . .
) « CORS configuration for frontend integration
PUT /api/admin/users/:id/status - Update user status (admin)) .

« Request logging for security auditing
only)
DELETE /api/admin/users/:id - Delete user (admin only)

Validation requirements

Data model requirements

Email format validation with proper regex

Javascript
P « Required field validation for all inputs
// User entity should include: « Data type validation and length constraints
{

id: “UUID primary key”, Duplicate email prevention

email: “unique, validated email address”,
password_hash: “bcrypt hashed password”,
first_name: “required string, 2-50 characters”,
last_name: “required string, 2-50 characters”,

Password confirmation matching during registration

role: “enum: ‘user’ | ‘admin’, default ‘user’”, Error handling
status: “enum: ‘active’ | ‘inactive’ | ‘suspended’, default
‘active’”, - Consistent error response format across all endpoints

email_verified: “boolean, default false”,
last_login: “timestamp, nullable”, « Appropriate HTTP status codes (200, 201, 400, 401, 403, 404, 409, 500)

created_at: “timestamp, auto-generated”,

updated_at: “timestamp, auto-updated” Detailed error messages for development, generic for production

Request validation errors with field-specific messages

Security requirements

« Password strength validation (min 8 chars, uppercase, lowercase, numbetr,
special char)

« Rate limiting: 5 login attempts per 15 minutes per IP

« JWT tokens expire after 1 hour, refresh tokens after 7 days

Expected response formats

Javascript

// Success response format:

{

“success”: true,
“data" { }_,

“message”: “Operation completed successfully”

// Error response format:
{
“success”: false,
“error”: {
“code”: “VALIDATION_ERROR”,
“message”: “Invalid input provided”,
“details”: [
{
“field”: “email”,
“message”: “Email format is invalid”

Database schema: Create PostgreSQL tables with proper indexing,
constraints, and relationships. Include migration scripts for easy setup.

Testing requirements:
« Unit tests for all service functions
« Integration tests for all API endpoints

« Test data factories for consistent test setup

« Positive and negative test cases
« Authentication and authorization test scenarios

« Minimum 90% code coverage

Additional features

« Environment-based configuration (development, staging, production)

« Request/response logging middleware
« Health check endpoint (GET /api/health)
- API versioning support (/api/vl/...)

« Pagination for user listing endpoints

« Basic search functionality for admin user management

Project structure

Organize code with clean architecture:

/src
/controllers - Request handling logic
/services - Business logic layer
/models - Data access layer
/middleware - Custom middleware (auth, validation, etc.)
/routes - API route definitions
/utils - Helper functions
/config - Configuration files
/validators - Input validation schemas
/tests - Test files mirroring src structure
/docs - API documentation
/migrations - Database schema migrations

37

Deliverables Expected

1. Complete Express.js application with all endpoints implemented
2. PostgreSQL database schema with setup scripts

3. Comprehensive test suite with high coverage

4. API documentation (Swagger/OpenAPI spec)

5. README with setup instructions and API usage examples

6. Docker configuration for easy deployment

7. Example environment configuration files

8. Postman collection for API testing

Performance Considerations

« Database connection pooling

- Efficient query patterns with proper indexing
« Response caching where appropriate

« Request timeout handling

« Memory usage optimization

Development Standards
« ESLint configuration with consistent code style
« Proper error handling throughout the application

» Comprehensive logging for debugging

» Clear code comments and documentation
» Git-ready project with proper .gitignore

Please implement this as a production-ready API that follows Node.js and
REST API best practices, with emphasis on security, maintainability, and
comprehensive testing.

38

ClaUde https:/www.anthropic.com/solutions/coding

https://www.anthropic.com/solutions/coding

	Appendix
	Project-level CLAUDE.md structure example
	Test-driven development with Claude Code:
User authentication
system example
	Content-rich
prompt example
	Well-structured
prompt example
	Foreward
	What is agentic coding?
	Rolling out agentic coding at your organization
	Measuring ROI
	Avoiding common challenges to adoption
	Security first: protecting your codebase
	Beyond the obvious:
innovative agentic coding applications
	Looking forward

